
Embedded Software
Fundamentals

How does code get converted into ones and zeroes?

Kizito NKURIKIYEYEZU,
Ph.D.

Reading material
Read the following resources available on the course platforms

1 Flowchart and software pseudocode which is uploaded on
the course platform

2 Chapter 1 of White, E. (2011). Making Embedded Systems:
Design Patterns for Great Software. " O’Reilly Media, Inc.".

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 1 / 23

Embedded software development

Host Machine
Development
Environments
Compiler Toolchain
Debuggers
Development Kits
Version Control

FIG 1. Components of an embedded
development

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 2 / 23

Modules of a typical embedded
software

The software is organized in
layers
Each layer assumes specific
functionality
Modules are described in
C-files (.c)
Definitions are described in
header files (.h)
Functions interact with other
modules
Eventually interact with
Hardware

FIG 2. Layers of an embedded system
software

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 3 / 23



Embedded system software in
layers

Device Drivers
Interface to hardware
layers
Hardware Abstraction
Layer (HAL)

Code Booting
Real-time operation system
(RTOS)

Abstracts High from Low
levels
Scheduling
Resource management

Libraries for shared code
Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 4 / 23

Hardware Abstraction

Low level and bare-Metal
Firmware
Hardware Abstraction Layer
Platform Independence
High quality and portable
software

Maintainable
Testable
Portable
Robust
Efficient
Consistent

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 5 / 23

Embedded programming
languages

FIG 3. Top embedded programming languages
ASPENCORE. (2017). 2017 Embedded Markets Study Integrating IoT and
Advanced Technology Designs, Application Development & Processing
Environments. April, 1–102.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 6 / 23

Why C?

Availability of compilers for almost
any MCU
Small executable
Deterministic resource use (e.g.,
no dynamic memory allocation)
Efficient Memory Management
Timing-centric operations
Direction Hardware/IO Control
Optimized execution
Note: Modern C++ is as efficient
as C and I believe it will slowly
replace C in the future. For details
see Kormanyos, C. (2018).
Real-time C++: efficient
object-oriented and template
microcontroller programming

FIG 4. C can be used even on
very small micro-controllers
The ATtiny20-UUR is an AVR
micro-controller that is smaller
than a grain of rice. It is an
8-Bit IC that runs at 12MHz
2KB (1K x 16) FLASH and
12-WLCSP (1.56x1.4)

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 7 / 23



Embedded software
development process

FIG 5. Embedded System Development Platform
The host machine contains the build environment for an embedded system. It
contains a cross compiler and a cross debugger. The debug allows
communication between the target processor through a special processor
interface, the JTAG

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 8 / 23

FIG 6. Computer and target processor

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 9 / 23

FIG 7. Software tools
The software tools include compiler toolchain (e.g., AVR GCC, gdb make files),
linker, emulators, simulators, SDK, text editors/IDE, version control, etc

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 10 / 23



FIG 8. Detailed embedded C compilation process
The C preprocessor transform the program before actual compilation. The
compiler translate the source code into opcode (object files) for the target
processor. The linker combine these object files and resolve all of the
unresolved symbols. The locator assign physical memory addresses to each of
the code and data and produce an output file containing a binary memory
image that can be loaded into the target ROM.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 11 / 23

FIG 9. The role of a preprocessor
The C preprocessor is the macro preprocessor for the C compiler. The
preprocessor provides the ability for the inclusion of header files, macro
expansions, conditional compilation, and line control.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 12 / 23

FIG 10. The role of a linker
The linker combines all of objects files into a single executable object code
uses symbols to reference other functions/variables

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 13 / 23

FIG 11. Linear detailed embedded C compilation process
The compiler translate the source code into opcode (object files) for the target
processor. The linker combine these object files and resolve all of the
unresolved symbols. The locator assign physical memory addresses to each of
the code and data and produce an output file containing a binary memory
image that can be loaded into the target ROM.

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 14 / 23



Code compilation using GNU
Toolsets

A computer only understand a set of instructions in a numeric
format, typically called machine code

1 #include <stdio.h>
2 int main() {
3 printf("Hello,

World!");
4 return 0;
5 }

Listing 1. Source code
FIG 12. Machine code

The GCC compiler—The GNU Compiler Collection1—is often
used for compilating embedded system

1https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html
Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 15 / 23

The preprocessor

First stage of the
compilation process
Removes all the comments
Include any #include files
(typical the .h header file)
Expands all the macros

1 gcc -E hello.c >
hello.i

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 16 / 23

Compilation—Compiles the pre-processed source code into
assembly code for a specific processor

1 gcc -S hello.i

Assembler converts the assembly code into machine code in
the object file

1 as -o hello.o hello.s

Linker links the object code with the library code to produce
an executable file

1 gcc -O hello.o

Note: You can generate all intermediate files with the
following command

1 gcc -save-temps hello.c

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 17 / 23

https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html


Introduction to Build
Systems using AVR GNU

Toolsets

Translation of C code into machine
code

:0C000000B89A91E088B3892788BBFCCF38
:00000001FF

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 18 / 23

Translation of C code into machine
code
GCC compiles a C/C++ program into executable in 4 steps:

1 Pre-processing—via the AVR GNU C Preprocessor
(avr-cpp), which includes the headers (#include) and
expands the macros (#define).

avr-cpp -mmcu=attiny13 blink.c > blink.i
The resultant intermediate file blink.i contains the expanded
source code.

2 Compilation—the compiler compiles the pre-processed
source code into assembly code for a specific processor.

avr-gcc -S blink.i >blink.s
The -S option specifies to produce assembly code, instead of
object code. The resultant assembly file is "blink.s".

3 Assembly —the assembler (avr-as) converts the assembly
code into machine code in the object file "hello.o".

avr-as -o blink.o blink.sKizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 19 / 23

Translation of C code into machine
code

4 Linker: Finally, the linker links the object code with the library
code to produce an executable and linkable format (.elf) file
"blink.elf".

avr-gcc blink.o -o blink.elf
This generates an .elf file isn’t directly executable by the
MCU. Thus, one needs to extract the machine code from it in
the Intel Hex format

avr-objcopy -O ihex -R .eeprom blink.elf blink.ihex
Notes:

You can see the detailed compilation process by enabling -v
(verbose) option. For example,

avr-gcc -v -mmcu=attiny13 -o blink.bin blink.c
You can Generate all intermidiate files

avr-gcc -mmcu=attiny13 -save-temps blink.c
You should always enable optimization with the -Os
parameter

avr-gcc -v -Os -mmcu=attiny13 -save-temps blink.c

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 20 / 23



Building automation

The need for building automation

Building can be tedious
Many GCC flags
Many independent
commands
Many build targets
Many supported
architectures
Many source files

Building manually can
cause consistency issues
waste development time

Real world software is
complex. For example, the
Linux kernel contains:

More than 23,000 .c files
More than 18,000 header
file
More than 1,400
assembly files
How would you compiler
this manually?

In most cases, one can use
an Integrated development
environment (IDE) to
automate this process.

Why use an automatic build system?
Build Management Software (or Build Automation) provides a
simple and consistent method for producing a target executable

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 21 / 23

Build Management Software

Automated the process of
Preprocessing
Assembling
Compiling
Linking
Relocating
Upload the machine code
to the microcontroller

GNU Toolset performs all
operations using make
Real world make files are
complex1, but are often
preferred to using IDE2

1https://www.gnu.org/software/make/manual/html_node/Complex-Makefile.html
2https://www.embeddedrelated.com/showthread/comp.arch.embedded/252000-1.php

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 22 / 23

Example make file

Kizito NKURIKIYEYEZU, Ph.D. Embedded Software Fundamentals January 15, 2023 23 / 23

 https://www.gnu.org/software/make/manual/html_node/Complex-Makefile.html
https://www.embeddedrelated.com/showthread/comp.arch.embedded/252000-1.php


The end


	Embedded software development process
	Code compilation using GNU Toolsets
	Introduction to Build Systems using AVR GNU Toolsets
	Building automation
	The end

